Module Lwt_unix
module Lwt_unix : sig..end
Cooperative system calls
This modules redefine system calls, as in the Unix module of the
standard library, but mapped into cooperative ones, which will not
block the program, letting other threads run.
The semantic of all operations is the following: if the action
(for example reading from a file descriptor) can be performed
immediatly, it is done and returns immediatly, otherwise it
returns a sleeping threads which is waked up when the operation
completes.
Moreover all sleeping threads returned by function of this modules
are cancelable, this means that you can cancel them with
Lwt.cancel. For example if you want to read something from a file descriptor with a timeout, you can cancel the action after
the timeout and the reading will not be performed if not already
done.
More precisely, assuming that you have two file descriptor
fd1 and fd2 and you want to read something from fd1 or
exclusively from fd2, and fail with an exception if a timeout of
1 second expires, without reading anything from fd1 and fd2,
even if they become readable in the future.
Then you can do:
Lwt.pick [Lwt_unix.timeout 1.0; read fd1 buf1 ofs1 len1; read fd2 buf2 ofs2 len2]
In this case it is guaranteed that exactly one of the three
operations will completes, and other will just be cancelled.
val handle_unix_error : ('a -> 'b Lwt.t) -> 'a -> 'b Lwt.t
Same as Unix.handle_unix_error but catches lwt-level
exceptions
Configuration ¶
type async_method = | Async_none(* System calls are made synchronously, and may block the entire program. *) | Async_detach(* System calls are made in another system thread, thus without blocking other Lwt threads. The drawback is that it may degrade performances in some cases.
This is the default. *) | Async_switch(* System calls are made in the main thread, and if one blocks the execution continue in another system thread. This method is the most efficint, also you will get better performances if you force all threads to run on the same cpu. On linux this can be done by using the command taskset.
Note that this method is still experimental. *)
For system calls that cannot be made asynchronously, Lwt uses one
of the following method:
val default_async_method : unit -> async_method
Returns the default async method.
This can be initialized using the environment variable
"LWT_ASYNC_METHOD" with possible values "none",
"detach" and "switch".
val set_default_async_method : async_method -> unit
Sets the default async method.
val async_method : unit -> async_method
async_method () returns the async method used in the current
thread.
val async_method_key : async_method Lwt.key
The key for storing the local async method.
val with_async_none : (unit -> 'a) -> 'a
with_async_none f is a shorthand for:
Lwt.with_value async_method_key (Some Async_none) f
val with_async_detach : (unit -> 'a) -> 'a
with_async_none f is a shorthand for:
Lwt.with_value async_method_key (Some Async_detach) f
val with_async_switch : (unit -> 'a) -> 'a
with_async_none f is a shorthand for:
Lwt.with_value async_method_key (Some Async_switch) f
Sleeping ¶
val sleep : float -> unit Lwt.t
sleep d is a threads which remain suspended for d seconds
and then terminates.
val yield : unit -> unit Lwt.t
yield () is a threads which suspends itself and then resumes
as soon as possible and terminates.
val auto_yield : float -> unit -> unit Lwt.t
auto_yield timeout returns a function f which will yield
every timeout seconds.
exception Timeout
Exception raised by timeout operations
val timeout : float -> 'a Lwt.t
timeout d is a threads which remain suspended for d seconds
then fail with Lwt_unix.Timeout
val with_timeout : float -> (unit -> 'a Lwt.t) -> 'a Lwt.t
with_timeout d f is a short-hand for:
Lwt.pick [Lwt_unix.timeout d; f ()]
Operation on file-descriptors ¶
type file_descr
The abstract type for file descriptors. A Lwt file
descriptor is a pair of a unix file descriptor (of type
Unix.file_descr) and a state.
A file descriptor may be:
- opened, in which case it is fully usable
- closed or aborted, in which case it is no longer usable
type state = | Opened(* The file descriptor is opened *) | Closed(* The file descriptor has been closed by Lwt_unix.close. It must not be used for any operation. *) | Aborted of exn(* The file descriptor has been aborted, the only operation possible is Lwt_unix.close, all others will fail. *)
State of a file descriptor
val state : file_descr -> state
state fd returns the state of fd
val unix_file_descr : file_descr -> Unix.file_descr
Returns the underlying unix file descriptor. It always
succeed, even if the file descriptor's state is not
Open.
val of_unix_file_descr :
?blocking:bool ->
?set_flags:bool -> Unix.file_descr -> file_descr
Creates a lwt file descriptor from a unix one.
blocking is the blocking mode of the file-descriptor, it
describe how Lwt will use it. In non-blocking mode, read/write
on this file descriptor are made using non-blocking IO; in
blocking mode they are made using the current async method. If
blocking is not specified it is guessed according to the file
kind: socket and pipes are in non-blocking mode and others are
in blocking mode.
If set_flags is true (the default) then the file flags are
modified according to the blocking argument, otherwise they
are left unchanged.
Note that the blocking mode is less efficient than the
non-blocking one, so it should be used only for file descriptors
that does not support asynchronous operations, such as regular
files, or for shared descriptors such as Lwt_unix.stdout, Lwt_unix.stderr or
Lwt_unix.stdin.
val blocking : file_descr -> bool Lwt.t
blocking fd returns whether fd is used in blocking or
non-blocking mode.
val set_blocking : ?set_flags:bool -> file_descr -> bool -> unit
set_blocking fd b puts fd in blocking or non-blocking
mode. If set_flags is true (the default) then the file flags
are modified, otherwise the modification is only done at the
application level.
val abort : file_descr -> exn -> unit
abort fd exn makes all current and further uses of the file
descriptor fail with the given exception. This put the file
descriptor into the Aborted state.
If the file descrptor is closed, this does nothing, if it is
aborted, this replace the abort exception by exn.
Note that this only works for reading and writing operations on
file descriptors supporting non-blocking mode.
Process handling ¶
val fork : unit -> int
fork () does the same as Unix.fork. You must use this
function instead of Unix.fork when you want to use Lwt in the
child process.
Notes:* in the child process all pending jobs are canceled,
- if you are going to use Lwt in the parent and the child, it is a good idea to call Lwt_io.flush_all before callling Lwt_unix.fork to avoid double-flush.
type process_status = Unix.process_status = | WEXITED of int | WSIGNALED of int | WSTOPPED of int
type wait_flag = Unix.wait_flag = | WNOHANG | WUNTRACED
val wait : unit -> (int * process_status) Lwt.t
Wrapper for Unix.wait
val waitpid :
wait_flag list ->
int -> (int * process_status) Lwt.t
Wrapper for Unix.waitpid
type resource_usage = { ru_utime: float;(* User time used *) ru_stime: float;(* System time used *)}
Resource usages
val wait4 :
wait_flag list ->
int -> (int * process_status * resource_usage) Lwt.t
wait4 flags pid returns (pid, status, rusage) where (pid,
status) is the same result as Unix.waitpid flags pid, and
rusage contains accounting information about the child.
On windows it will always returns { utime = 0.0; stime = 0.0 }.
val wait_count : unit -> int
Returns the number of threads waiting for a child to
terminate.
val system : string -> process_status Lwt.t
Wrapper for Unix.system
Basic file input/output ¶
val stdin : file_descr
The standard file descriptor for input. This one is usually
a terminal is the program is started from a terminal.
val stdout : file_descr
The standard file descriptor for output
val stderr : file_descr
The standard file descriptor for printing error messages
type file_perm = Unix.file_perm
type open_flag = Unix.open_flag = | O_RDONLY | O_WRONLY | O_RDWR | O_NONBLOCK | O_APPEND | O_CREAT | O_TRUNC | O_EXCL | O_NOCTTY | O_DSYNC | O_SYNC | O_RSYNC
val openfile :
string ->
open_flag list ->
file_perm -> file_descr Lwt.t
Wrapper for Unix.openfile.
val close : file_descr -> unit Lwt.t
Close a file descriptor. This close the underlying unix file descriptor and set its state to Closed
val read : file_descr -> string -> int -> int -> int Lwt.t
read fd buf ofs len has the same semantic as Unix.read, but
is cooperative
val write : file_descr -> string -> int -> int -> int Lwt.t
read fd buf ofs len has the same semantic as Unix.write, but
is cooperative
val readable : file_descr -> bool
Returns whether the given file descriptor is currently
readable.
val writable : file_descr -> bool
Returns whether the given file descriptor is currently
writable.
val wait_read : file_descr -> unit Lwt.t
waits (without blocking other threads) until there is something
to read on the file descriptor
val wait_write : file_descr -> unit Lwt.t
waits (without blocking other threads) until it is possible to
write on the file descriptor
Seeking and truncating ¶
type seek_command = Unix.seek_command = | SEEK_SET | SEEK_CUR | SEEK_END
val lseek : file_descr -> int -> seek_command -> int Lwt.t
Wrapper for Unix.lseek
val truncate : string -> int -> unit Lwt.t
Wrapper for Unix.truncate
val ftruncate : file_descr -> int -> unit Lwt.t
Wrapper for Unix.ftruncate
Syncing ¶
val fsync : file_descr -> unit Lwt.t
Synchronise all data and metadata of the file descriptor with
the disk. On Windows it uses FlushFileBuffers.
val fdatasync : file_descr -> unit Lwt.t
Synchronise all data (but not metadata) of the file descriptor
with the disk.
Note that fdatasync is not available on all platforms.
File status ¶
type file_kind = Unix.file_kind = | S_REG | S_DIR | S_CHR | S_BLK | S_LNK | S_FIFO | S_SOCK
type stats = Unix.stats = { st_dev: int; st_ino: int; st_kind: file_kind; st_perm: file_perm; st_nlink: int; st_uid: int; st_gid: int; st_rdev: int; st_size: int; st_atime: float; st_mtime: float; st_ctime: float;}
val stat : string -> stats Lwt.t
Wrapper for Unix.stat
val lstat : string -> stats Lwt.t
Wrapper for Unix.lstat
val fstat : file_descr -> stats Lwt.t
Wrapper for Unix.fstat
val isatty : file_descr -> bool Lwt.t
Wrapper for Unix.isatty
File operations on large files ¶
module LargeFile : sig..end
Operations on file names ¶
val unlink : string -> unit Lwt.t
Wrapper for Unix.unlink
val rename : string -> string -> unit Lwt.t
Wrapper for Unix.rename
val link : string -> string -> unit Lwt.t
Wrapper for Unix.link
File permissions and ownership ¶
val chmod : string -> file_perm -> unit Lwt.t
Wrapper for Unix.chmod
val fchmod : file_descr -> file_perm -> unit Lwt.t
Wrapper for Unix.fchmod
val chown : string -> int -> int -> unit Lwt.t
Wrapper for Unix.chown
val fchown : file_descr -> int -> int -> unit Lwt.t
Wrapper for Unix.fchown
type access_permission = Unix.access_permission = | R_OK | W_OK | X_OK | F_OK
val access : string -> access_permission list -> unit Lwt.t
Wrapper for Unix.access
Operations on file descriptors ¶
val dup : file_descr -> file_descr
Wrapper for Unix.dup
val dup2 : file_descr -> file_descr -> unit
Wrapper for Unix.dup2
val set_close_on_exec : file_descr -> unit
Wrapper for Unix.set_close_on_exec
val clear_close_on_exec : file_descr -> unit
Wrapper for Unix.clear_close_on_exec
Directories ¶
val mkdir : string -> file_perm -> unit Lwt.t
Wrapper for Unix.mkdir
val rmdir : string -> unit Lwt.t
Wrapper for Unix.rmdir
val chdir : string -> unit Lwt.t
Wrapper for Unix.chdir
val chroot : string -> unit Lwt.t
Wrapper for Unix.chroot
type dir_handle = Unix.dir_handle
val opendir : string -> dir_handle Lwt.t
Wrapper for Unix.opendir
val readdir : dir_handle -> string Lwt.t
Wrapper for Unix.dir
val readdir_n : dir_handle -> int -> string array Lwt.t
readdir_n handle count reads at most count entry from the
given directory. It is more efficient that callling count
times readdir. If the length of the returned array is smaller
than count, this means that the end of the directory has been
reached.
val rewinddir : dir_handle -> unit Lwt.t
Wrapper for Unix.rewinddir
val closedir : dir_handle -> unit Lwt.t
Wrapper for Unix.closedir
val files_of_directory : string -> string Lwt_stream.t
files_of_directory dir returns the stream of all files of
dir.
Pipes and redirections ¶
val pipe : unit -> file_descr * file_descr
pipe () creates pipe using Unix.pipe and returns two lwt file descriptors created from unix file_descriptor
val pipe_in : unit -> file_descr * Unix.file_descr
pipe_in () is the same as Lwt_unix.pipe but maps only the unix file descriptor for reading into a lwt one. The second is not
put into non-blocking mode. You usually want to use this before
forking to receive data from the child process.
val pipe_out : unit -> Unix.file_descr * file_descr
pipe_out () is the inverse of Lwt_unix.pipe_in. You usually want to
use this before forking to send data to the child process
val mkfifo : string -> file_perm -> unit Lwt.t
Wrapper for Unix.mkfifo
Symbolic links ¶
val symlink : string -> string -> unit Lwt.t
Wrapper for Unix.symlink
val readlink : string -> string Lwt.t
Wrapper for Unix.readlink
Locking ¶
type lock_command = Unix.lock_command = | F_ULOCK | F_LOCK | F_TLOCK | F_TEST | F_RLOCK | F_TRLOCK
val lockf : file_descr -> lock_command -> int -> unit Lwt.t
Wrapper for Unix.lockf
User id, group id ¶
type passwd_entry = Unix.passwd_entry = { pw_name: string; pw_passwd: string; pw_uid: int; pw_gid: int; pw_gecos: string; pw_dir: string; pw_shell: string;}
type group_entry = Unix.group_entry = { gr_name: string; gr_passwd: string; gr_gid: int; gr_mem: string array;}
val getlogin : unit -> string Lwt.t
Wrapper for Unix.getlogin
val getpwnam : string -> passwd_entry Lwt.t
Wrapper for Unix.getpwnam
val getgrnam : string -> group_entry Lwt.t
Wrapper for Unix.getgrnam
val getpwuid : int -> passwd_entry Lwt.t
Wrapper for Unix.getpwuid
val getgrgid : int -> group_entry Lwt.t
Wrapper for Unix.getgrgid
Signals ¶
type signal_handler_id
Id of a signal handler, used to cancel it
val on_signal : int -> (int -> unit) -> signal_handler_id
on_signal signum f calls f each time the signal with numnber
signum is received by the process. It returns a signal handler
identifier which can be used to stop monitoring signum.
val disable_signal_handler : signal_handler_id -> unit
Stops receiving this signal
val signal_count : unit -> int
Returns the number of registered signal handler.
val reinstall_signal_handler : int -> unit
reinstall_signal_handler signum if any signal handler is
registered for this signal with Lwt_unix.on_signal, it reinstall the
signal handler (with Sys.set_signal). This is usefull in case
another part of the program install another signal handler.
Sockets ¶
type inet_addr = Unix.inet_addr
type socket_domain = Unix.socket_domain = | PF_UNIX | PF_INET | PF_INET6
type socket_type = Unix.socket_type = | SOCK_STREAM | SOCK_DGRAM | SOCK_RAW | SOCK_SEQPACKET
type sockaddr = Unix.sockaddr = | ADDR_UNIX of string | ADDR_INET of inet_addr * int
val socket :
socket_domain ->
socket_type -> int -> file_descr
socket domain type proto is the same as Unix.socket but maps
the result into a lwt file descriptor
val socketpair :
socket_domain ->
socket_type ->
int -> file_descr * file_descr
Wrapper for Unix.socketpair
val bind : file_descr -> sockaddr -> unit
Wrapper for Unix.bind
val listen : file_descr -> int -> unit
Wrapper for Unix.listen
val accept : file_descr -> (file_descr * sockaddr) Lwt.t
Wrapper for Unix.accept
val accept_n :
file_descr ->
int ->
((file_descr * sockaddr) list * exn option) Lwt.t
accept_n fd count accepts up to count connection in one time.
- if no connection is available right now, it returns a sleeping thread
- if more that 1 and less than count are available, it returns all of them
- if more that count are available, it returns the next count of them
- if an error happen, it returns the connections that have been successfully accepted so far and the error
accept_n has the advantage of improving performances. If you
want a more detailed description, you can have a look at:
val connect : file_descr -> sockaddr -> unit Lwt.t
Wrapper for Unix.connect
type shutdown_command = Unix.shutdown_command = | SHUTDOWN_RECEIVE | SHUTDOWN_SEND | SHUTDOWN_ALL
val shutdown : file_descr -> shutdown_command -> unit
Wrapper for Unix.shutdown
val getsockname : file_descr -> sockaddr
Wrapper for Unix.getsockname
val getpeername : file_descr -> sockaddr
Wrapper for Unix.getpeername
type msg_flag = Unix.msg_flag = | MSG_OOB | MSG_DONTROUTE | MSG_PEEK
val recv :
file_descr ->
string -> int -> int -> msg_flag list -> int Lwt.t
Wrapper for Unix.recv
val recvfrom :
file_descr ->
string ->
int ->
int -> msg_flag list -> (int * sockaddr) Lwt.t
Wrapper for Unix.recvfrom
val send :
file_descr ->
string -> int -> int -> msg_flag list -> int Lwt.t
Wrapper for Unix.send
val sendto :
file_descr ->
string ->
int -> int -> msg_flag list -> sockaddr -> int Lwt.t
Wrapper for Unix.sendto
type io_vector = { iov_buffer: string; iov_offset: int; iov_length: int;}
An io-vector. Used by Lwt_unix.recv_msg and Lwt_unix.send_msg.
val io_vector : buffer:string -> offset:int -> length:int -> io_vector
Creates an io-vector
val recv_msg :
socket:file_descr ->
io_vectors:io_vector list ->
(int * Unix.file_descr list) Lwt.t
recv_msg ~socket ~io_vectors receives data into a list of
io-vectors, plus any file-descriptors that may accompany the
message.
This call is not available on windows.
val send_msg :
socket:file_descr ->
io_vectors:io_vector list ->
fds:Unix.file_descr list -> int Lwt.t
send_msg ~socket ~io_vectors ~fds sends data from a list of
io-vectors, accompanied with a list of file-descriptor. If
fd-passing is not possible on the current system and fds is
not empty, it raises Lwt_sys.Not_available "fd_passing".
This call is not available on windows.
type credentials = { cred_pid: int; cred_uid: int; cred_gid: int;}
val get_credentials : file_descr -> credentials
get_credentials fd returns credential informations from the
given socket.
Socket options
type socket_bool_option = Unix.socket_bool_option = | SO_DEBUG | SO_BROADCAST | SO_REUSEADDR | SO_KEEPALIVE | SO_DONTROUTE | SO_OOBINLINE | SO_ACCEPTCONN | TCP_NODELAY | IPV6_ONLY
type socket_int_option = Unix.socket_int_option = | SO_SNDBUF | SO_RCVBUF | SO_ERROR | SO_TYPE | SO_RCVLOWAT | SO_SNDLOWAT
type socket_optint_option = Unix.socket_optint_option = | SO_LINGER
type socket_float_option = Unix.socket_float_option = | SO_RCVTIMEO | SO_SNDTIMEO
val getsockopt : file_descr -> socket_bool_option -> bool
Wrapper for Unix.getsockopt
val setsockopt : file_descr -> socket_bool_option -> bool -> unit
Wrapper for Unix.setsockopt
val getsockopt_int : file_descr -> socket_int_option -> int
Wrapper for Unix.getsockopt_int
val setsockopt_int : file_descr -> socket_int_option -> int -> unit
Wrapper for Unix.setsockopt_int
val getsockopt_optint : file_descr -> socket_optint_option -> int option
Wrapper for Unix.getsockopt_optint
val setsockopt_optint :
file_descr ->
socket_optint_option -> int option -> unit
Wrapper for Unix.setsockopt_optint
val getsockopt_float : file_descr -> socket_float_option -> float
Wrapper for Unix.getsockopt_float
val setsockopt_float : file_descr -> socket_float_option -> float -> unit
Wrapper for Unix.setsockopt_float
val getsockopt_error : file_descr -> Unix.error option
Wrapper for Unix.getsockopt_error
Host and protocol databases ¶
type host_entry = Unix.host_entry = { h_name: string; h_aliases: string array; h_addrtype: socket_domain; h_addr_list: inet_addr array;}
type protocol_entry = Unix.protocol_entry = { p_name: string; p_aliases: string array; p_proto: int;}
type service_entry = Unix.service_entry = { s_name: string; s_aliases: string array; s_port: int; s_proto: string;}
val gethostname : unit -> string Lwt.t
Wrapper for Unix.gethostname
val gethostbyname : string -> host_entry Lwt.t
Wrapper for Unix.gethostbyname
val gethostbyaddr : inet_addr -> host_entry Lwt.t
Wrapper for Unix.gethostbyaddr
val getprotobyname : string -> protocol_entry Lwt.t
Wrapper for Unix.getprotobyname
val getprotobynumber : int -> protocol_entry Lwt.t
Wrapper for Unix.getprotobynumber
val getservbyname : string -> string -> service_entry Lwt.t
Wrapper for Unix.getservbyname
val getservbyport : int -> string -> service_entry Lwt.t
Wrapper for Unix.getservbyport
type addr_info = Unix.addr_info = { ai_family: socket_domain; ai_socktype: socket_type; ai_protocol: int; ai_addr: sockaddr; ai_canonname: string;}
type getaddrinfo_option = Unix.getaddrinfo_option = | AI_FAMILY of socket_domain | AI_SOCKTYPE of socket_type | AI_PROTOCOL of int | AI_NUMERICHOST | AI_CANONNAME | AI_PASSIVE
val getaddrinfo :
string ->
string ->
getaddrinfo_option list -> addr_info list Lwt.t
Wrapper for Unix.getaddrinfo
type name_info = Unix.name_info = { ni_hostname: string; ni_service: string;}
type getnameinfo_option = Unix.getnameinfo_option = | NI_NOFQDN | NI_NUMERICHOST | NI_NAMEREQD | NI_NUMERICSERV | NI_DGRAM
val getnameinfo :
sockaddr ->
getnameinfo_option list -> name_info Lwt.t
Wrapper for Unix.getnameinfo
Terminal interface ¶
type terminal_io = Unix.terminal_io = { mutable c_ignbrk: bool; mutable c_brkint: bool; mutable c_ignpar: bool; mutable c_parmrk: bool; mutable c_inpck: bool; mutable c_istrip: bool; mutable c_inlcr: bool; mutable c_igncr: bool; mutable c_icrnl: bool; mutable c_ixon: bool; mutable c_ixoff: bool; mutable c_opost: bool; mutable c_obaud: int; mutable c_ibaud: int; mutable c_csize: int; mutable c_cstopb: int; mutable c_cread: bool; mutable c_parenb: bool; mutable c_parodd: bool; mutable c_hupcl: bool; mutable c_clocal: bool; mutable c_isig: bool; mutable c_icanon: bool; mutable c_noflsh: bool; mutable c_echo: bool; mutable c_echoe: bool; mutable c_echok: bool; mutable c_echonl: bool; mutable c_vintr: char; mutable c_vquit: char; mutable c_verase: char; mutable c_vkill: char; mutable c_veof: char; mutable c_veol: char; mutable c_vmin: int; mutable c_vtime: int; mutable c_vstart: char; mutable c_vstop: char;}
val tcgetattr : file_descr -> terminal_io Lwt.t
Wrapper for Unix.tcgetattr
type setattr_when = Unix.setattr_when = | TCSANOW | TCSADRAIN | TCSAFLUSH
val tcsetattr :
file_descr ->
setattr_when -> terminal_io -> unit Lwt.t
Wrapper for Unix.tcsetattr
val tcsendbreak : file_descr -> int -> unit Lwt.t
Wrapper for Unix.tcsendbreak
val tcdrain : file_descr -> unit Lwt.t
Wrapper for Unix.tcdrain
type flush_queue = Unix.flush_queue = | TCIFLUSH | TCOFLUSH | TCIOFLUSH
val tcflush : file_descr -> flush_queue -> unit Lwt.t
Wrapper for Unix.tcflush
type flow_action = Unix.flow_action = | TCOOFF | TCOON | TCIOFF | TCION
val tcflow : file_descr -> flow_action -> unit Lwt.t
Wrapper for Unix.tcflow
Low-level interaction ¶
exception Retry
If an action raises Lwt_unix.Retry, it will be requeued until the file descriptor becomes readable/writable again.
exception Retry_read
If an action raises Lwt_unix.Retry_read, it will be requeued until the
file descriptor becomes readable.
exception Retry_write
If an action raises Lwt_unix.Retry_read, it will be requeued until the
file descriptor becomes writables.
type io_event = | Read | Write
val wrap_syscall : io_event -> file_descr -> (unit -> 'a) -> 'a Lwt.t
wrap_syscall set fd action wrap an action on a file
descriptor. It tries to execture action, and if it can not be
performed immediately without blocking, it is registered for
latter.
In the latter case, if the thread is canceled, action is
removed from set.
val check_descriptor : file_descr -> unit
check_descriptor fd raise an exception if fd is not in the
state Open
val register_action : io_event -> file_descr -> (unit -> 'a) -> 'a Lwt.t
register_action set fd action registers action on fd. When
fd becomes readable/writable action is called.
Note:
- you must call check_descriptor fd before calling register_action
- you should prefer using Lwt_unix.wrap_syscall
type 'a job
Type of jobs that run:
- on another thread if the current async method is Async_thread
- on the main thread if the current async method is Async_none.
val execute_job :
?async_method:async_method ->
job:'a job ->
result:('a job -> 'b) ->
free:('a job -> unit) -> 'b Lwt.t
execute_job ?async_method ~job ~get ~free starts
job and wait for its termination.
async_method is how the job will be executed. It defaults to
the async method of the current thread. result is used to get
the result of the job, and free to free its associated
resources.
val cancel_jobs : unit -> unit
cancel_jobs () make all pending jobs to fail with
Lwt.Canceled.
val wait_for_jobs : unit -> unit Lwt.t
Wait for all pending jobs to terminate.
Notifications ¶
Lwt internally use a pipe to send notification to the main
thread. The following functions allow to use this pipe.
val make_notification : ?once:bool -> (unit -> unit) -> int
new_notifier ?once f registers a new notifier. It returns the
id of the notifier. Each time a notification with this id is
received, f is called.
if once is specified, then the notification is stopped after
the first time it is received. It defaults to false.
val send_notification : int -> unit
send_notification id sends a notification.
This function is thread-safe.
val stop_notification : int -> unit
Stop the given notification. Note that you should not reuse the
id after the notification has been stopped, the result is
unspecified if you do so.
val set_notification : int -> (unit -> unit) -> unit
set_notification id f replace the function associated to the
notification by f. It raises Not_found if the given
notification is not found.
System threads pool ¶
If the program is using the async method Async_detach or
Async_switch, Lwt will launch system threads to execute
blocking system calls asynchronously.
val pool_size : unit -> int
Maximum number of system threads that can be started. If this
limit is reached, jobs will be executed synchronously.
val set_pool_size : int -> unit
Change the size of the pool.
val thread_count : unit -> int
The number of system threads running (excluding this one).
val thread_waiting_count : unit -> int
The number threads waiting for a job.
CPUs ¶
val get_cpu : unit -> int
get_cpu () returns the number of the CPU the current thread is
running on.
val get_affinity : ?pid:int -> unit -> int list
get_affinity ?pid () returns the list of CPUs the process with
pid pid is allowed to run on. If pid is not specified then
the affinity of the current process is returned.
val set_affinity : ?pid:int -> int list -> unit
set_affinity ?pid cpus sets the list of CPUs the given process
is allowed to run on.